Abstract

Metal-organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E-MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E-MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E-MOFs demonstrate excellent performance with surface state model in both co-reactant and annihilation ECL in aqueous medium. Compared with the individual components, E-MOFs significantly improve the ECL emission due to the framework structure. The self-enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre-reduction electrolysis. The self-enhanced mechanism is theoretically identified by DFT. The mixed-ligand E-MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.