Abstract

A porous carbon material that was co-doped with copper and phosphorus (Cu-P-C) was synthesized by the direct thermal conversion of [(Ph3 P)2 CuCl2 ] in the channels of an SBA-15 template and found to be an impressive Cu-based electrocatalyst. The prefabricated Cu-Px moieties in the starting [(Ph3 P)2 CuCl2 ] were retained during the preparation process of the catalyst. These Cu-Px active sites effectively catalyzed the oxygen-reduction reaction (ORR). Moreover, the hierarchically porous morphology of the Cu-P-C material, which demonstrated a large specific surface area, allowed for a higher density of the Cu-Px active sites, thereby facilitating mass transfer and further boosting the electrocatalytic activity of the Cu-P-C catalyst. The as-obtained catalyst exhibited surprising catalytic activity, with a halfwave potential of 0.833 V in alkaline medium, which was comparable to that of the commercial Pt/C-JM catalyst, and possessed the highest activity among the reported M-P-C catalysts for the ORR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.