Abstract

Silk fibroin (SF) with good biocompatibility and degradability has great potential for tissue engineering. However, the SF based scaffolds lack the electroactivity to regulate the myogenic differentiation for the regeneration of muscle tissue, which is sensitive to electrical signal. Herein, a series of electroactive biodegradable scaffolds based on SF and water-soluble conductive poly(aniline-co-N-(4-sulfophenyl) aniline) (PASA) via a green method for skeletal muscle tissue engineering are designed. SF/PASA scaffolds are prepared by vortex of aqueous solution of SF and PASA under physiological condition. Murine-derived L929 fibroblast and C2C12 myoblast cells are used to evaluate cytotoxicity of SF/PASA scaffolds. Moreover, myogenic differentiation of C2C12 cells is investigated by analyzing the morphology of myotubes and related gene expression. These results suggest that electroactive SF/PASA scaffolds with a suitable microenvironment, which can enhance the myogenic differentiation of C2C12 cells, have a great potential for skeletal muscle regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.