Abstract

An electro-absorption optical modulator based on dual-graphene-on-graphene configuration is presented and investigated. Four graphene layers are embedded in a silicon-on-insulator (SOI) waveguide, the total metal-graphene contact resistance of this structure is reduced 50% by the graphene layers co-electrode design. By optimizing the position of each graphene-on-graphene (GOG) layer in the waveguide, a strong interaction between graphene layers and light is obtained, which leads to a significant change of the effective mode index (EMI) in the waveguide. Calculations show that an electro-absorption optical modulator can achieve 34 dB extinction ratio (ER) and 100 GHz modulation bandwidth with 5 µm-long active region and 17.6 fJ/bit consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call