Abstract

This work presents a comprehensive study of electroabsorption in CdSe colloidal quantum dots, nanorods, and nanoplatelets. We experimentally demonstrate that the exposure of the nanoplatelets to a dc electric field leads to strong broadening of their lowest-energy heavy-hole absorption band and drastically reduces the absorption efficiency within the band. These are results of the quantum-confined Stark and Franz–Keldysh effects. The field-induced change in the nanoplatelets’ absorption is found to be more than 10 times the change in the absorption by the quantum dots. We also demonstrate that the electroabsorption by the nanorods is weaker than that by the quantum dots and nanoplatelets and reveal an unusual dependence of the differential absorption changes on the nanoplatelet thickness: the thicker the nanoplatelet, the smaller the change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call