Abstract

Smart textiles with tunable luminescence have received special attention due to their great potential in various advanced photonic applications. Particularly, the development of one-dimensional, on-demand, responsive fluorescence fibers with excellent adaptability is of great significance. Herein, we propose electro-thermochromic fluorescence fibers regulated by a self-crystallinity phase change; that is, their tunable luminescence properties are derived from the reversible conversion of the dispersion state and fluorescence emission of fluorophore molecules during the crystallization/melting processes of phase-change materials. First results obtained with an alginate wet-spinning system demonstrate that the self-crystallinity phase change can produce polymeric fibers with thermochromic fluorescence behavior, which are prepared using microemulsion particles containing a phase-change fatty acid and coumarin fluorescent dyes. These thermochromic fluorescence fibers possess a fast response speed, high emission contrast, and good reversibility (>100 cycles). Particularly, the thermochromic fluorescent fibers can gain an electrotriggered capability by means of electric heating materials, and their great potential in precision operation applications is demonstrated. It is easy to adjust the switching point of the electro-thermochromic fluorescence fibers, highlighting their potential use in a diverse range of applications, the designs of which can be personalized. This work offers a simple yet versatile strategy for constructing electro-thermochromic fluorescence fibers for advanced smart textiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call