Abstract

A new conductive aggregate was prepared by the calcination of magnetically separated fly ash and used to form a mortar containing carbon fiber. The electrical resistivity, electro-thermal properties, and Seebeck effect of the mortar were studied. The prepared mortar has good electrical conductivity and electro-thermal effects, which facilitate its use as a thermal actuator. Furthermore, the greater Seebeck effect would allow the mortar to be used as a temperature sensor. Based on these properties of the mortar, a smart self-heating and self-sensing system was fabricated, which was found to be capable of measuring temperature accurately, maintaining a set temperature, and operating reliably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.