Abstract
We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for an n-anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature-dependent approximation for the thermal resistance. The electro-thermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from ~ 13% to ~ 4% by including the thermal effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Terahertz Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.