Abstract
Degradation of the antidepressant venlafaxine by a novel electrocatalytic ozonation process, electro-peroxone (E-peroxone), was studied. The E-peroxone treatment involves sparging ozone generator effluent (O2 and O3 gas mixture) into an electrolysis reactor that is equipped with a carbon-polytetrafluoroethylene cathode to electrocatalytically transform O2 in the bubbled gas to H2O2. The in-situ generate H2O2 then reacts with the bubbled O3 to yield OH, which can non-selectively degrade organic compounds rapidly in the solution. Thanks to the significant OH production, the E-peroxone treatment greatly enhanced both venlafaxine degradation and total organic carbon (TOC) removal as compared to ozonation and electrolysis alone. Under optimal reaction conditions, complete venlafaxine degradation and TOC elimination could be achieved within 3 and 120min of E-peroxone process, respectively. Based on the by-products (e.g., hydroxylated venlafaxine, phenolics, and carboxylic acids) identified by UPLC–UV and UPLC/Q-TOF-mass spectrometry, plausible reaction pathways were proposed for venlafaxine mineralization by the E-peroxone process. The results of this study suggest that the E-peroxone treatment may provide a promising way to treat venlafaxine contaminated water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.