Abstract

The lubrication approximation is applied to electro-osmotic flow through a thin parallel-plate channel under the combined effect of charge and hydrodynamic slippage modulation on the walls. The walls are periodically patterned for the charge and slip distributions, with a wavelength much longer than the channel height. It is shown that the phase of the wall patterns will play a significant role in determining the section-averaged velocity as well as the local convection pattern, both quantitatively and qualitatively. The effect of the phase on the flow will be dramatically different, depending on whether the electric field is applied along or perpendicular to the varying direction of the patterns. The possibility of generating a net flow in a direction perpendicular to the applied field is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.