Abstract

The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotating electric field is called electrorotation. In both situations, the applied electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole, and also from induced-charge electro-osmotic flow around the particle. First, we describe the dipole theory that describes electro-orientation and electrorotation of perfectly polarizable metal rods. Second, based on a slender approximation, an analytical theory that describes induced-charge electro-orientation and electrorotation of metal nanowires is provided. Finally, experimental measurements of the electro-orientation and electrorotation of metal nanowires are presented and compared with theory, providing a comprehensive study of the relative importance between induced-dipole rotation and induced-charge electro-osmotic rotation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.