Abstract

Suspended particle devices (SPDs) adapted for controlling the transmission of electromagnetic radiation have become an area of considerable focus for smart window technology due to their desirable properties, such as instant and precise light control and cost-effectiveness. Here, we demonstrate a SPD with tunable transparency in the visible regime using colloidal assemblies of nanoparticles. The observed transparency using ZnS/SiO2 core/shell colloidal nanoparticles is dynamically tunable in response to an external electric field with increased transparency when applied voltage increases. The observed transparency change is attributed to structural ordering of nanoparticle assemblies and thereby modifies the photonic band structures, as confirmed by the finite-difference time-domain simulations of Maxwell’s equations. The transparency of the device can also be manipulated by changing the particle size and the device thickness. In addition to transparency, structural colorations and their dynamic tunabilit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.