Abstract

The electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system is reported. The line waveguide is formed by removing a single row of dielectric cylinders. The twin optical microcavities side coupled between linear waveguides is studied by solving Maxwell's equations. We determine the general characteristics of the coupling element required to achieve channel drop tunneling. By modulating the conductance of the twin microcavities, the electrical tunability of the resonant modes is observed in the transmission spectrum. The spectral characteristics suggest a potential application for this switching device as an efficient multichannel optical switch in the photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.