Abstract

An electro-optic modulator based on hybrid plasmonic micro-ring-disks with submicron radii is designed and rigorously investigated via the finite-element method. The device is based on the conductor-gap-silicon hybrid plasmonic platform and utilizes an embedded electro-optical polymer to control the resonant wavelengths of micro-ring-disk resonators. Such elements combine the easier fabrication of microdisks with the lower capacitance of microring resonators and provide high modulation depths, low insertion losses, and energy consumption around 1 fJ/bit. Finally, an add-drop filter configured in a \(2 \times 2\) switching matrix is presented and its performance is preliminary assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.