Abstract

A novel method is presented to embed finite-impulse-response filters in slow-wave Mach–Zehnder modulators. This allows to adjust the electro-optic frequency response to the designer's needs. The filter is embedded by adding optical delay lines and optical crossings between phase shifter segments. The position of the delay lines and crossing in the modulator and the delay line length determine the final response. In this work, we provide a full analysis and modeling approach of the proposed technique and apply it to a silicon photonic modulator. However, the technique is generally applicable to slow-wave modulators and thus not limited to a silicon photonics platform. The modeling is verified using measurements on the manufactured devices. A shaped modulator is used in C-band transmission experiments with 56 Gb/s NRZ data over 3 km fiber to counteract chromatic dispersion and show the advantage over a standard modulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.