Abstract

The well known quantum confined Stark effect (QCSE) is currently being exploited to design optoelectronic devices based on electric field controlled absorption of photons. QCSE is also responsible for strong below exciton resonance changes in refractive index with applied field. These changes can be used for high speed couplers and switches in waveguides. This paper focuses on the use of strain to influence the excitonic resonances in In x Ga 1− x As/Al 0.2Ga 0.8As and In 0.53± x Ga 0.47∓ x As/InGaAsP multiple quantum wells. Experimental results are presented showing the effect of compressive and tensile strain on the refractive index changes. Theoretical results including the important HH-LH band mixing effects are presented for the electrooptic effect. In particular, the contribution of the excitonic part is discussed and is found to dominate the electro-optic effect near the bandedge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.