Abstract

This study proposes a compound control method based on sliding mode and active disturbance rejection control to address the difficulty of controlling the cutting head for boom-type roadheader with parameter changes and uncertain disturbances. The fastest discrete tracking differentiator and extended state observer based on the traditional active disturbance rejection control are designed. Additionally, the controller of the sliding mode and active disturbance rejection control is constructed. Theoretical analysis indicates that the proposed controller ensures asymptotic stability, despite the existing uncertain disturbances. Moreover, a system based on AMESim and MATLAB/Simulink Co-simulation model is developed to further verify the performance of proposed algorithm. Compared with traditional active disturbance rejection control, proportional-integral-derivative(PID) and sliding mode control, co-simulation results demonstrate that the sliding mode active disturbance rejection compound control improves the tracking accuracy and robustness of the position servo system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call