Abstract

The sperm propelling mechanism has been proposed as a possible resource for soft micro-robots in confined spaces, with potential applications in biomedical engineering. Human sperm cells essentially swim through the non-Newtonian liquid (cervical mucus) to reach their target. Thus, sperm cells swimming through non-Newtonian fluids is not vital only for physiology, but also for the fabrication of swimming micro-robots. Inspired by these remarkable applications, we examine the basic mechanics of spermatozoa motility using an undulating sheet model. This undulating sheet is bounded between two rigid walls which is self-propeling in the negative axial direction. The liquid around the spermatozoa is taken as Carreau fluid with electro-osmotic properties. The application of the lubrication approximation results in the reduction of momentum equations. The resulting ODE is solved numerically via the finite difference method and MATLAB’s built-in routine bvp5c. The unknowns that are present in the boundary conditions are refined by the root-finding algorithm. Power losses, cell speed, flow rate, velocity of the fluid, and streamline pattern are visualized by graphs. The findings of this study have important implications for the designing and optimization of electrically controlled microswimmers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call