Abstract
The degradation of a 41 mg dm −3 ibuprofen (2-(4-isobutylphenyl)propionic acid) solution of pH 3.0 has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Experiments were performed in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and an O 2-diffusion cathode. Heterogeneous hydroxyl radical ( OH) is generated at the anode surface from water oxidation, while homogeneous OH is formed from Fenton's reaction between Fe 2+ and H 2O 2 generated at the cathode, being its production strongly enhanced from photo-Fenton reaction induced by sunlight. Higher mineralization is attained in all methods using BDD instead Pt, because the former produces greater quantity of OH enhancing the oxidation of pollutants. The mineralization rate increases under UVA and solar irradiation by the rapid photodecomposition of complexes of Fe(III) with acidic intermediates. The most potent method is solar photoelectro-Fenton with BDD giving 92% mineralization due to the formation of a small proportion of highly persistent final by-products. The effect of Fe 2+ content, pH and current density on photoelectro-Fenton degradation has been studied. The ibuprofen decay always follows a pseudo-first-order kinetics and its destruction rate is limited by current density and UV intensity. Aromatics such as 1-(1-hydroxyethyl)-4-isobutylbenzene, 4-isobutylacetophenone, 4-isobutylphenol and 4-ethylbenzaldehyde, and carboxylic acids such as pyruvic, acetic, formic and oxalic have been identified as oxidation by-products. Oxalic acid is the ultimate by-product and the fast photodecarboxylation of its complexes with Fe(III) under UVA or solar irradiation explains the higher oxidation power of photoelectro-Fenton methods in comparison to electro-Fenton procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.