Abstract

An innovative electro-Fenton enhanced membrane photobioreactor with satisfactory membrane fouling mitigation was constructed for microalgae harvesting. The porous carbon and carbon nanotubes hollow fiber membranes (PC-CHFMs) were used as the separation unit and cathode, simultaneously. H2O2 was generated by cathode reducing O2 in-situ, which would further produce •OH as the main oxidant by coupling H2O2 with Fe2+. The •OH could deeply remove the extracellular organic matter (EOM) deposited on the membrane surface or inside the pores. Experimental results showed that the permeate flux recovery rates of PC-CHFMs by electro-Fenton at the 18th, 29th and 41st day were 100%, 100% and 98.3%, respectively. The corresponding recovery rates by chemical cleaning at the same time were 99.8%, 81.7% and 54.4%. The stable and high permeate flux of PC-CHFMs made a great contribution to the microalgae harvesting efficiency, where the concentration factor could be 4.8 times higher than that of the control group. Filtrating superiority of PC-CHFMs was becoming more prominent with the extension of operating time. In addition, the removal efficiency of NH4+-N and TP in wastewater was approximately 100% at stable culture period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call