Abstract

Many redox enzymes require expensive reduced cofactors like NAD(P)H which need to be recycled during catalysis, presenting a major cost and technical barrier to industrial exploitation. An electrochemical biphasic microfluidic setup is presented here, in which these cofactors are replaced by a mediator (methyl viologen) that acts by feeding electrons into the active site of the enzyme pentaerythritol tetranitrate reductase (PETNR). In this microfluidic recirculation setup, both enzyme and mediator remain in the reactor for reuse, allowing easy product recovery. System optimisation studies were performed using 2-cyclohexen-1-one as a model substrate prior to the investigation of a variety of different substrates whose reduction rates were determined to be 15–70% of those obtained when NADPH was used as sole electron donor. Additional data obtained with a thermophilic ‘ene’ reductase (TOYE) support the potential universality of this device for possible industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.