Abstract
Electrochemical organic synthesis has attracted increasing attentions as a sustainable and versatile synthetic platform. Quantitative assessment of the electro-organic reactions, including reaction thermodynamics, electro-kinetics, and coupled chemical processes, can lead to effective analytical tool to guide their future design. Herein, we demonstrate that electrochemical parameters such as onset potential, Tafel slope, and effective voltage can be utilized as electro-descriptors for the evaluation of reaction conditions and prediction of reactivities (yields). An "electro-descriptor-diagram" is generated, where reactive and non-reactive conditions/substances show distinct boundary. Successful predictions of reaction outcomes have been demonstrated using electro-descriptor diagram, or from machine learning algorithms with experimentally-derived electro-descriptors. This method represents a promising tool for data-acquisition, reaction prediction, mechanistic investigation, and high-throughput screening for general organic electro-synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.