Abstract

Electro-deposition is a smart, safe and efficient method for biomaterial manufacturing. Collagen, a functional protein with excellent biocompatibility and biosafety, is a promising candidate for tissue engineering and biomedical applications. However, there are few reports on electro-deposition of biomaterials using collagen without electrically or magnetically active nanoparticles. In this study, electro-deposition was employed to swiftly fabricate tube-like collagen–chitosan hydrogels in a mild environment. Fourier transform infrared spectroscopy was employed to analyze the ingredients of the tube-like hydrogels. The result showed that the hydrogels contained both collagen and chitosan. The distribution and content of collagen in the hydrogels was further measured by hematoxylin–eosin staining and hydroxyproline titration. Collagen was distributed homogeneously and its content was related to the initial collagen:chitosan ratio. The tension resistance of the composite gels and the thermal stability of collagen in the composites were obviously enhanced by the chitosan doping. Meanwhile, the tube-like hydrogels retained a good ability to promote cell proliferation of collagen. This method offers a convenient approach to the design and fabrication of collagen-based materials, which could effectively retain the bioactivity and biosafety of collagen and furnish a new way to enhance the stability of collagen and the tensile strength of collagen-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call