Abstract
Degenerative central nervous system (CNS) disorders and traumatic brain injuries are common nowadays. These may induce the loss of neuronal cells and delicate connections essential for optimal CNS function. The CNS tissue has restricted regeneration ability, hindering the development of effective therapies. Developing cell and tissue instructive materials may bring up new treatment possibilities. In this study, chitosan-graphene nano platelets (GNPs) composite films were developed to regenerate brain cells. This study evaluates the effects of GNP concentration (0.5, 1 and 2 wt%) and their alignment on mechanical, electrical, surface, protein adsorption and biological properties of the regenerative scaffolds. Incorporating and aligning GNPs into chitosan matrix improved all the physical and biological properties. On reinforced scaffolds, HT22 cell morphology mimics pyramidal brain cells, which are responsible for the brain's highly branched neural network. Additionally, the reinforced scaffolds supported Mesenchymal Stem like Cells growth and were biocompatible in vivo. The alignment of GNPs in the chitosan matrix offered the appropriate physicochemical and biological properties to promote adhesion, proliferation and shape morphogenesis of hippocampal HT22 neuronal cells. Overall, this study delineates the enormous potential offered by the GNP-reinforced scaffolds for regeneration of central nervous system, especially the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.