Abstract

Ionomeric polymer–metal composites (IPMCs) consist of an ionomer with bound anionic groups and mobile counterions. They are plated with noble impermeable metal cover layers. By application of an electric voltage, a transport of the mobile ions towards the respective electrode occurs. Due to local electrostatic and ionic forces, a local deformation of the IPMC can be observed. Therefore IPMCs are promising candidates for electrochemical transducers. In the present research, the chemo-electro-mechanical behavior of IPMCs is described within the framework of the theory of porous media. First, the field equations are derived with respect to the second law of thermodynamics. Second, a reduced set of equations for the chemo-electric behavior is formulated and discretized by applying the finite element method. In the numerical investigations a parametric study of the time and space dependent behavior is carried out in order to quantify the influence of different material compositions. Based on this study, the characteristic response of IPMC to the application of an electric voltage can be predicted. Concluding, the obtained computational framework is an excellent tool for the design of electrochemical transducers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call