Abstract
This study analyses the electrokinetic (EK) contribution to the removal from a clay soil of a mixture of 10 different contaminants of emerging concern (CECs; 17β-estradiol, E2; sulfamethoxazole, SMX; bisphenol A, BPA; ibuprofen, IBU; 17α-ethinylestradiol, EE2; oxybenzone, OXY; diclofenac, DCF; triclosan, TCS; caffeine, CAF; carbamazepine, CBZ). After 4 days, the CECs natural attenuation was between 0% (CBZ) and 90% (E2) yet increasing with the application of EK (20 mA, 12 h ON/OFF) to 14% (CBZ) and 100% (E2). When EK was applied, the CECs more recalcitrant to biodegradation (i.e. ≤ 13% biotic decay) mostly underwent electro-chemical induced degradation (OXY, DCF, TCS, CAF, CBZ). Daily irrigation enhanced the rates of the electro-oxidation -osmosis and -migration, increasing the CECs decay. After 8 days of EK treatment, the CECs decay increased, surpassing the decay lag phase of some compounds (OXY, TCS, and CBZ). Yet after 16 days, most CECs showed similar removals with and without EK, with EK only acting positively on SMX, OXY, TCS and CBZ (ca. +10%). Our results support that EK application can improve the removal of CECs from soil, however, under the conditions tested, 16-day treatment lead to pH alterations that decreased the bioremediation efficiency and inhibited electro-degradation near the cathode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.