Abstract

The roughness and thickness of films formed by hybrid conjugates prepared by coupling poly(3,4-ethylenedioxythiophene) and synthetic amino acids bearing a 3,4-ethylenedioxythiophene group in the side chain have been significantly increased using a new synthetic approach. This procedure also provoked a more effective incorporation of the amino acid at the end of the polymer chains, as has been reflected by the electronic and electrochemical properties. Although the surface polarity of all these materials is similar to that of formamide, the hydrophilicity of the conjugates is higher than that of the conducting polymer. The surface energy of all the investigated systems is dominated by the dispersive component, even though the role played by the polar contribution is more important for the conjugates than for the conducting polymer. On the other hand, all the prepared materials behave as bioactive matrices. The electrochemical response of the conjugates coated with cells reflects the electro-compatibility of these two-component substrates. Thus, the ability to exchange charge reversibly of all conjugates increases considerably when they are coated with cellular monolayers, which has attributed to favorable interactions at the interface formed by the conjugate surface and the cellular monolayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.