Abstract

Chemical converted graphene (CCG) were coated on 316L stainless steel as a bipolar plate which is a component of proton exchange membrane fuel cell (PEMFC) by electro spray coating (ESC). Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to examine the thickness and surface properties of coating layer. Electrochemical potentiodynamic test was conducted in acidic atmosphere (0.1N H2SO4+2ppm F-) at 80°C using Versastat 4 and analysis program for corrosion resistance measurement. After packing bipolar plates for PEMFC stack, the electrical performances of graphite, bare SS316L and graphene coated SS316L bipolar plates were evaluated by PEMFC evaluating device. The chemical converted graphene was founded on the surface of coated SS316L, and the thickness was 12μm. Graphene coated bipolar plate showed high corrosion resistance of 1.32×10-7A/cm2beside bare SS316L bipolar plate. In electrical performance evaluation, the graphene coated bipolar plate was shown 0.978V on Voc and 0.5A/m2on the reduction potential (0.6V). Although the electrical performance of the graphene coated bipolar plate is lower than graphite bipolar plate, the thickness and weight is lower than graphite bipolar plate. These advantages can enable the PEMFC system more efficiently and economically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call