Abstract
The photochemical and electrochemical properties of self-assembled monolayers (SAM) of three structurally distinct hexahydro- and hexafluoro-dithienylcyclopentene-based photochromic switches on gold electrodes are reported. The photochemical and electrochemical switching between the open and closed forms of the dithienylethene SAMs is examined and found to be sensitive to the molecular structure of the switch. For the three dithienylethenes, the electrochemical behavior with respect to electrochemical ring opening/closing is retained in the SAMs. In contrast, a marked dependence on the nature of the anchoring group is observed upon immobilization in terms of the retention of the photochemical properties observed in solution. For the meta-thiophenol anchor both photochemical ring opening and closing are observed in the SAM, while for the thienyl-thiol-anchored switches the photochemically properties are changed markedly compared with those observed in solution. The stability of the monolayers toward desorption following photochemical and electrochemical switching is examined through electrochemistry and X-ray photoelectron spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.