Abstract

Osteoarthritis (OA) is a highly prevalent joint disorder characterized by progressive degeneration of articular cartilage, subchondral bone remodeling, osteophyte formation, synovial inflammation, and meniscal damage. Although the etiology of OA is multifactorial, pro-inflammatory processes appear to play a key role in disease pathogenesis. Previous studies indicate that electroacupuncture (EA) exerts chondroprotective, anti-inflammatory, and analgesic effects in preclinical models of OA, but the mechanisms underlying these potential therapeutic benefits remain incompletely defined. This study aimed to investigate the effects of EA on OA development in a rat model, as well as to explore associated molecular mechanisms modulated by EA treatment. Forty rats were divided into OA, EA, antagomiR-214, and control groups. Following intra-articular injection of monosodium iodoacetate to induce OA, EA and antagomiR-214 groups received daily EA stimulation at acupoints around the knee joint for 21 days. Functional pain behaviors and chondrocyte apoptosis were assessed as outcome measures. The expression of microRNA-214 (miR-214) and its downstream targets involved in apoptosis and nociception, BAX and TRPV4, were examined. Results demonstrated that EA treatment upregulated miR-214 expression in OA knee cartilage. By suppressing pro-apoptotic BAX and pro-nociceptive TRPV4, this EA-induced miR-214 upregulation ameliorated articular pain and prevented chondrocyte apoptosis. These findings suggested that miR-214 plays a key role mediating EA's therapeutic effects in OA pathophysiology, and represents a promising OA treatment target for modulation by acupuncture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.