Abstract

The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution is critical to advance materials technologies such as catalysis and batteries. Here, we develop an electrified operando-freezing methodology to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO2 reduction as a model system, we observe restructuring of the Cu catalyst in a CO2 atmosphere while the same catalyst remains intact in air at the nanometer scale. Furthermore, we discover the existence of a single valence Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the operando-frozen samples, which are key reaction intermediates that traditional ex situ measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, with broad impact beyond catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.