Abstract

Modularization of hybrid-electric propulsion for commercial aircraft is becoming a reality in air transportation. The main intent of an electric architecture is to produce less carbon emissions and advance towards sustainability in the aeronautics industry. Due to regulatory and customer requirements for new technologies aimed at climate change and pollution, the integration of hybrid electric engine design become more challenging. Conceptual modular and integral product architectures are being compared with conventional and new constructions. A Design Structure Matrix (DSM) model is developed to analyze configuration of sub-component and their relationships through interaction between system elements. The DSM model includes product decomposition and cyclic task interdependencies to understand the extent of modularity in the product life cycle. The traditional turbofan engine architecture will be compared with hybrid electric propulsion engine architecture. The analysis indicates that the electric engine configuration constitutes a shift to a more distributed and less modular architecture. The DSM model reported a 19% increase in density of connectivity between components and 58% decrease in terms of structural complexity. The significance of these changes demonstrates that the more distributed architecture of the fully electric engine architecture requires less effort in system integration than the geared traditional turbofan architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call