Abstract

NOx storage-reduction (NSR), a promising approach for removing NOx pollutants from diesel vehicles, remains elusive to cope with the increasingly lower exhaust temperatures (especially below 250 °C). Here, we develop a conceptual electrified NSR strategy, where electricity with a low input power (0.5-4 W) is applied to conductive Pt and K co-supported antimony-doped tin oxides (Pt-K/ATO), with C3H6 as a reductant. The ignition temperature for 10% NOx conversion is nearly 100 °C lower than that of the traditional thermal counterpart. Furthermore, reducing the power in the fuel-lean period relative to that in the fuel-rich period increases the maximum energy efficiency by 23%. Electrically driven release of lattice oxygen is revealed to play vital roles in multiple steps in NSR, including NO adsorption, desorption, and reduction, for improved NSR activity. This work provides an electrification strategy for developing high-activity NSR catalysis utilizing electricity onboard hybrid vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call