Abstract

Truck-Shovel (TS) systems are the most common mining system currently used in large surface mines. They offer high productivity combined with the flexibility to be rapidly relocated and to adjust load/haul capacity and capital expenditure according to market conditions. As the world moves to decarbonise as part of the transition to net zero emission targets, it is relevant to examine options for decarbonising the haulage systems in large surface mines. In-Pit Crushing and Conveying (IPCC) systems offer a smaller environmental footprint regarding emissions, but they are associated with a number of limitations related to high initial capital expenditure, capacity limits, mine planning and inflexibility during mine operation. Among the emerging technological options, innovative Trolley Assist (TA) technology promises to reduce energy consumption for lower carbon footprint mining systems. TA systems have demonstrated outstanding potential for emission reduction from their application cases. Battery and energy recovery technology advancements are shaping the evolution of TAs from diesel-electric truck-based patterns toward purely electrified BT ones. Battery Trolley (BT) systems combined with autonomous battery-electric trucks and Energy Recovery Systems (ERSs) are novel and capable of achieving further significant emission cuts for surface mining operations associated with safety, energy saving and operational improvements. This article reviews and compares electrification alternatives for large surface mines, including IPCC, TA and BT systems. These emerging technologies provide opportunities for mining companies and associated industries to adopt zero-emission solutions and help transition to an intelligent electric mining future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call