Abstract

A novel electric-pulse-induced reversible resistance (EPIR) change effect was observed in Ag/Ln1-xCaxMnO3/Pt (Ln= Pr, La) sandwich structure at room temperature without applied magnetic field. The Ln1-xCaxMnO3 films were grown on Pt/Ti/SiO2/Si substrate. The resistance of the Ag/Ln1-xCaxMnO3/Pt sandwich structure increases and reaches at a saturated high resistance state after applying a certain number of electric-pulse from Pt bottom electrode to Ln1-xCaxMnO3 layer, while it decreases and switches to a saturated low resistance state when the pulse polarity reversed. It is also found that the EPIR effect in the /Ln0.7Ca0.3MnO3/Pt system exhibits “fatigue” behavior, that is, for the high resistance state activated by electric-pulse, along the time after pulsing, the resistance decreases slowly after a certain stable stage; otherwise, the resistance change ratio decreases as the number of the high-low resistance switching circle increases. For the fatigue phenomenon with time, a resistance change with three stages was observed and a simple mechanism of the EPIR was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.