Abstract

To produce energy and reduce sludge production from the treatment of municipal wastewater, four identical microbial fuel cells (MFCs) were constructed in an anoxic–oxic (A/O) process (MFCs-A/O system). Experimental results indicated that this system enhance the removals of chemical oxygen demand (COD) and total nitrogen (TN). The electricity produced by each MFC were ranged from 0.371 to 0.477V (voltage) and from 138 to 227mW/m3 (power density) at the stable stage, when the external resistance was fixed at 1000Ω. The coulombic efficiency of the MFCs-A/O system ranged from 0.31% to 1.68% (mean=0.72%) at the stable stage, respectively. The removals of COD and TN in the MFCs-A/O system were slightly higher than those in the control system. Compared with the control system, the MFCs-A/O system can reduce waste activated sludge production and sludge yield by 24.0% and 24.2%, respectively. The experimental results indicated that the MFC constructed in A/O system improves wastewater treatment and the MFCs-A/O system can produce electricity while reducing sludge production and increasing wastewater treatment efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call