Abstract

In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter by bacteria at the anode, with reduction of oxygen at the cathode. Proton exchange membranes used in MFCs are permeable to oxygen, resulting in the diffusion of oxygen into the anode chamber. This could either lower power generation by obligate anaerobes or result in the loss in electron donor from aerobic respiration by facultative or other aerobic bacteria. In order to maintain anaerobic conditions in conventional anaerobic laboratory cultures, chemical oxygen scavengers such as cysteine are commonly used. It is shown here that cysteine can serve as a substrate for electricity generation by bacteria in a MFC. A two-chamber MFC containing a proton exchange membrane was inoculated with an anaerobic marine sediment. Over a period of a few weeks, electricity generation gradually increased to a maximum power density of 19 mW/m(2) (700 or 1000 Omega resistor; 385 mg/L of cysteine). Power output increased to 39 mW/m(2) when cysteine concentrations were increased up to 770 mg/L (493 Omega resistor). The use of a more active cathode with Pt- or Pt-Ru, increased the maximum power from 19 to 33 mW/m(2) demonstrating that cathode efficiency limited power generation. Power was always immediately generated upon addition of fresh medium, but initial power levels consistently increased by ca. 30% during the first 24 h. Electron recovery as electricity was 14% based on complete cysteine oxidation, with an additional 14% (28% total) potentially lost to oxygen diffusion through the proton exchange membrane. 16S rRNA-based analysis of the biofilm on the anode of the MFC indicated that the predominant organisms were Shewanella spp. closely related to Shewanella affinis (37% of 16S rRNA gene sequences recovered in clone libraries).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.