Abstract

Microbial fuel cells (MFCs) can potentially be used for power generation, but their low energy storage hinders their practical application. This study presents a novel, multilayer capacitive bioanode, modified using nitrogen-doped carbon nanotubes (N-CNT), polyaniline (PANI), and manganese dioxide (MnO2). The power-generation and energy-storage performance of MFCs containing carbon felt (CF)/N-CNT/PANI/MnO2 anodes was found to be much higher than that of traditional MFCs. The power density of an MFC with a CF/N-CNT/PANI/MnO2 bioanode (13.8 W/m3) was 2.7 times greater than that of an MFC with a bare anode (3.73 W/m3). Similarly, the exchange current density of the bioanode (0.41 A/m2) was much higher than that of the bare anode (0.06 A/m2). In chronoamperometric tests with 60 min of charging and discharging, it was observed that the stored charge of the bioanode (2492.80 C/m2) was 33 times higher than that of the bare anode (75.50 C/m2). High-throughput sequencing results showed that the CF/N-CNT/PANI/MnO2-modified bioanode exhibited high community diversity and selective enrichment of electrogenic bacteria. The dominant genera on the modified anode were electroactive bacteria, Desulfuromonas (34.39%) and Geobacter (27.93%). Therefore, MFCs with capacitive bioanodes show potential for storage and release of energy within short periods of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.