Abstract

Application of the plant microbial fuel cell (PMFC) in wetlands should be invisible without excavation of the soil. The preferred design is a tubular design with the anode directly between the plant roots and an oxygen reducing biocathode inside the tube. Oxygen should be passively supplied to the cathode via a gas diffusion layer. In this research silicone was successfully used as gas diffusion layer. The objective of this research is to start-up an oxygen reducing biocathode in situ in a tubular PMFC applied in a Phragmites australis peat soil and a Spartina anglica salt marsh. PMFCs with a biocathode were successfully started in the peat soil. Oxygen reduction is clearly catalysed, likely by microorganisms in the cathodes, as the overpotential decreased resulting in an increased current density and cathode potential. The maximum daily average power generation of the best peat soil PMFC was 22mWm−2. PMFCs with a biocathode in the salt marsh only started with pure oxygen diffusion reaching a maximum daily average power generation of 82mWm−2. Both wetland PMFCs were successfully started with natural occurring microorganism in the anode and cathode. Calculations show that the power density can be increased by improving the PMFC design limiting crossover of oxygen and substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.