Abstract

As the global population is growing at a high rate, so is the electricity demand also increasing at a faster rate. This exerts pressure on electricity-generating plants and maintenance engineers because of the variability in demand. Avoiding disruption in the supply to meet demand requires forecasting what the future of demand will look like to be able to plan adequately towards it. This study, therefore, develops a new forecasting model using feature extraction (FE) where statistical information of the hourly demand data is extracted which serves as input variables for Backpropagation neural network (BPNN) optimized by particle swarm optimization (PSO) for electricity demand forecasting in Ghana. The model known as FE-PSO-BPNN is compared to other seven models such as Radial Basis Function (RBFNN), Random Forest (RF), Gradient Boosting Machine (GBM), Multivariate Adaptive Regression Splines (MARS), BPNN, and PSO-RBFNN where FE selects the input variables for all models. Electricity demand data from Ghana Grid Company from the period including 1st September 2018 to 30th November 2019 is used for the testing of the model's performance. Evaluation criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Scatter Index (SI) were used. The proposed model is more powerful in forecasting electricity demand than the others as it has RMSE (0.5344), MAE (3.3845), MAPE (0.1773), and SI (0.0003). The model is expected to be a better option for electricity sector managers when considering demand forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.