Abstract

This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call