Abstract

Electricity is the backbone of the modern world. Yet, electricity access is beyond the reach of nearly one billion people worldwide. Therefore, electrification is a vital development objective. While the global power sector is expanding to meet the increasing electricity demand, global warming calls for its transformation towards a low-carbon version. Under the Paris Agreement, countries have committed to curbing carbon emissions, with the power sector being one of the primary targets for emissions reduction actions. At the same time, climate change is affecting the global economy, including the power sector. The extreme weather events are among the primary causes of power outages, which will likely intensify under the future climate. Gradual changes in climate variables also threaten the power supply’s reliability. The developing economies are further challenged to address this climate mitigation-adaptation paradox while satisfying their most pressing objective: electrification and rapid growth in energy demand. This dissertation addresses this societal challenge through a holistic consideration of both climate change mitigation and adaptation within the context of the growing Indonesian power sector. The dissertation employs a set of methodological steps, relying primarily on the use of the prominent sectoral electricity software model LEAP. Its water counterpart model WEAP is also used to assess climate change impacts on water resources and hydropower. Furthermore, the dissertation reports the results of Semi-Structured Interviews and Focus Group Discussions conducted with the power sector’s practitioners to investigate the effects of extreme weather events and gradual climate change on the power sector. This dissertation advances the current LEAP modeling practice by sequentially taking into consideration endogenous technological learning and climate change impacts and adaptation into the model simulations of long-term power system expansion. Results show that the implementation of the Indonesian renewable energy targets helps in achieving the country’s CO2 mitigation target, but entails higher total costs of electricity production. However, the fast technological learning of renewable technologies significantly reduces the overall costs. Furthermore, when the projected climate change impacts are integrated into simulations of the power system expansion, the power system adapts by installing extra capacity and producing more energy to balance the climate-driven surge in the electricity demand and to compensate for a reduced power-generating capacity of power plants under adverse impacts of the future climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.