Abstract

The multiferroic $\mathrm{BiFe}{\mathrm{O}}_{3}$ (BFO) as a charge-transfer-type insulator is an interesting system in which to explore correlated electronic conduction. Here, we substitute divalent Ca ions into the parent BFO and apply an external electric field at elevated temperatures to spatially redistribute spontaneously created oxygen vacancies, thereby generating hole carriers in regions of less dense oxygen-vacancy concentrations. X-ray diffraction and photoemission spectroscopic measurement are employed to quantify a large variation of local oxygen-vacancy concentration, as much as $\ensuremath{\sim}{10}^{21}\phantom{\rule{0.16em}{0ex}}\mathrm{c}{\mathrm{m}}^{\ensuremath{-}3}$, and explore the consequent evolution of electronic band structure. We find that a nonrigid polaronic band is created by hole doping as a result of a strong electron-lattice coupling. We also show strong evidence for the disorder-driven formation of a Coulomb-glass state through electronic transport measurements on a quantitative level. These spectroscopic and transport results can be combined and understood in the framework of intrinsic spatial inhomogeneity of the polaronic charge density. The finding not only offers a promising platform and methodology for examining the interplay of functional defects and correlated electronic behaviors, but also suggests a unique electronic conduction mechanism applicable to systems with coexistence of strong electron correlation, electron-lattice interaction, and randomness beyond the Coulomb-glass physics in semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.