Abstract

There is a growing demand for materials with high thermal conductivity, electrical insulation, flexibility, and toughness for application in flexible electronic devices. To develop materials with the aforementioned properties, composites comprising the flexible and tough polyrotaxane (PR) and highly thermally conductive hexagonal boron nitride particles (hBN) were fabricated in this study. An electric field was applied during the polymerization of the composites to improve their thermal conductivity in the out-of-plane direction of the composites without reducing their flexibility. Electric-field application during polymerization controlled the orientation of hBN in the as-synthesized composites, forming pillar-like structures comprising oriented hBN. The particle diameter and concentration of hBN were optimized to synthesize an electrically insulating composite with elastomer-class flexibility in the in-plane direction (a low Young’s modulus of 77 MPa) and metallic-alloy-class thermal conductivity in the out-of-plane direction (>10 W/mK) with a wide range of potential applications including thermal interface materials in electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call