Abstract

ABSTRACTChitosan/barium titanate (BaTiO3) composite hydrogel elastomers were prepared in the presence or absence of an applied direct‐current (dc) electric field. Scanning electron microscopy was used to observe the microstructure of the elastomers and the dispersion of particles in it. Tests of the storage moduli (Gs) of the elastomers were investigated with a dynamic mechanical analyzer. On this basis, the G increment and increment sensitivity were explored. The results show that the particles were sequentially dispersed, and the values of the G values for the elastomer were higher under an external applied dc electric field; this indicated that the composite elastomers exhibited excellent electric field response. Furthermore, the electric‐field response of the composite elastomers changed with the particle concentration, and the maximum response occurred when the mass fraction of BaTiO3 was 2.0%. The G value of the composite elastomer with a BaTiO3 weight percentage of 2.0 increased with increasing electric field; this revealed that the composite elastomer had a positive electric field response. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42094.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.