Abstract

The respective and combined effects of applied electric field and axial compressive stress on the rhombohedral-to-orthorhombic (R-O) phase transformation in d32 cut [011]-poled PMN-(28–32)%PT single crystals have been investigated. The axial compressive stress in the [100] length direction is found to reduce the R-O transformation field (ERO) of the crystal. On field or stress removal, PMN-(28–30)%PT reverted back to the rhombohedral state and the original good properties were restored. In contrast, field and/or stress-induced R-O transformation in PMN-32%PT single crystal is irreversible such that the initial properties of the crystal could not be recovered even after field and/or stress removal. The results indicate that while the poled single-domain orthorhombic state is the lowest energy state in PMN-32%PT, multidomain rhombohedral state is the lowest energy state in PMN-(28–30)%PT. The maximum electric-field-induced strains for the linear anhysteretic actuation of PMN-30%PT d32-cut crystals under concurrent field and stress condition are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.