Abstract

We have theoretically investigated electric-field and magnetic-field effects on electronic transport properties in nanostructures consisting of realistic magnetic barriers created by lithographic patterning of ferromagnetic or superconducting films. The results indicate that the characteristics of transmission resonance are determined not only by the magnetic configuration and the incident wave vector but also strongly by the applied electric and magnetic fields. It is shown that transmission resonance shifts towards the low-energy region by applying the electric field, and that with increasing the electric field transmission resonance is suppressed for the entire incident wave vector in the magnetic nanostructures with antisymmetric magnetic profile, while for the magnetic nanostructures with symmetric magnetic profile transmission resonance is enhanced for certain incident wave vector. It is also shown that both transmission and conductance shift towards high-energy direction and are greatly suppressed with the increase of the external magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.