Abstract

Electric double layers (EDLs) formed between polyethylene oxide cesium perchlorate and multilayer WSe2 field-effect transistors (FETs) are explored as a means for contact and access region doping. In this application, the electric double layer is formed using a top field plate or a side gate and then locked into place by cooling of the device below the glass transition temperature of the polymer. A dual work-function Ti/Pd contact is used to form the Schottky contacts with Ti as the n-contact and Pd as the p-contact and these are evaporated in a single evaporation. Using the EDL doping technique, sheet carrier density and current density are as high as (4.9 ± 1.9) × 1013 cm−2 and 58 μA/μm for n-doping and (3.5 ± 1.9) × 1013 cm−2 and 50 μA/μm for p-doping for the highest channel conductivities. The weak temperature dependence of the transfer characteristics at high doping levels reveals that the current in the Schottky contacts is dominated by tunneling with a contact resistance of 1 kΩ μm for the p-branch and 3.4 kΩ μm for the n-branch, comparable to the best WSe2 FET reports. At the highest carrier densities, the temperature coefficient of the conductance becomes negative as the mobility of the channel controls the temperature dependence. Using EDL doping, n-FET and p-FET configurations are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.