Abstract

Silver (Ag) introduced colloidal Sn-doped In2O3 (ITO) ink for transparent conductive electrodes (TCEs) was prepared to overcome the limitation of colloidally prepared thin film; low density thin film, high resistance. ITO@Ag colloid ink was made by controlling the weight ratio of ITO and Ag nanoparticles through ball-milling and fabricated using spin coating. These films were dried at 220 °C and heat-treated at 450–750 °C in an air atmosphere to pyrolyze the organic ligand attached to the nanoparticles. All thin films showed high crystallinity. As the thermal treatment temperature increased, films showed a cracked surface, but as the weight percentage of silver increased, a flattened and smooth surface appeared, caused by the metallic silver filling the gap between the nano-particles. This worked as a bridge to allow electrical conduction, which decreases the resistivity over an order of magnitude, from 309 to 0.396, and 0.107 for the ITO-220 °C, ITO-750 °C, and ITO@Ag (7.5 wt.%)-750 °C, respectively. These films also exhibited >90% optical transparency. Lowered resistivity is caused due to the inclusion of silver, providing a sufficient number of charge carriers. Furthermore, the work function difference between ITO and silver builds an ohmic junction, allowing fluent electrical flow without any barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call