Abstract

The present study examined the tunability of wave polarization splitting and conversion in a one-dimensional photonic crystal (1DPC) structure containing anisotropic electro-optical material. The 4 × 4 transfer matrix method was used to study the transmission properties of the structure. The incident light was assumed to be perpendicular to the optical axes of the anisotropic defect layer. The results indicate that, in the absence of an applied external electric field, for an incident plane wave with P- or S-polarization, a single P- or S-polarized defect mode, respectively, appears with the photonic band gap. Application of the external electric field create two P-polarized and two S-polarized defect modes of equal intensity. As the applied field increased, the splitting mode increased. The photonic band edges of the induced P(S)-polarized mode decreased (increased) as the field increased. The results of this communication can be useful in the design of tunable mode-selecting optical filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.